Fan-beam tomography: short scan

This page describes fan-beam tomographic image reconstruction using the Julia package Sinograms.jl for a "short" scan where the rotation (orbit) is 180° plus the fan angle. This case requires Parker weighting.

This page focuses on fan-beam with an "arc" detector, i.e., 3rd-generation CT systems where the detector is an arc having a focal point at the X-ray source. This geometry is popular in part because it facilitates anti-scatter grids.

This page comes from a single Julia file: 06-fan-short.jl.

You can access the source code for such Julia documentation using the 'Edit on GitHub' link in the top right. You can view the corresponding notebook in nbviewer here: 06-fan-short.ipynb, or open it in binder here: 06-fan-short.ipynb.

Setup

Packages needed here.

using Plots: plot, gui
using Unitful: mm
using Sinograms: SinoFanArc, rays, plan_fbp, fbp, sino_geom_plot!
using ImageGeoms: ImageGeom, fovs, MaskCircle
using ImagePhantoms: SheppLogan, shepp_logan, radon, phantom
using MIRTjim: jim, prompt

The following line is helpful when running this file as a script; this way it will prompt user to hit a key after each figure is displayed.

isinteractive() ? jim(:prompt, true) : prompt(:draw);

Fan-beam sinogram of Shepp-Logan phantom

For illustration, we start by synthesizing a fan-beam sinogram of the Shepp-Logan phantom.

For completeness, we use units (from Unitful), but units are optional.

Use ImageGeom to define the image geometry.

ig = ImageGeom(MaskCircle(); dims=(128,126), deltas = (2mm,2mm) )
ImageGeoms.ImageGeom{2, NTuple{2,Unitful.Quantity{Int64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}}, BitMatrix}
 dims::NTuple{2,Int64} (128, 126)
 deltas::NTuple{2,Unitful.Quantity{Int64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}} (2 mm, 2 mm)
 offsets::NTuple{2,Float32} (0.0f0, 0.0f0)
 mask: 128×126 BitMatrix {12096 of 16128}

Use SinoFanArc to define the sinogram geometry, with the :short option for orbit to make a short scan. Note that even though we specify na = 100 we end up with na = 67 views because of the :short option.

rg = SinoFanArc( :short, ;
    nb = 130, d = 3.2mm, na = 100, dsd = 400mm, dod = 140mm,
)
SinoFanArc{Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float32} :
 nb::Int64 130
 d::Unit{Float64} 3.2 mm
 offset::Float32 0.0
 na::Int64 67
 orbit::Float32 239.12924
 orbit_start::Float32 0.0
 source_offset::Unit{Float64} 0.0 mm
 dsd::Unit{Float64} 400.0 mm
 dod::Unit{Float64} 140.0 mm

Examine the geometry to verify the FOV. The na=67 blue dots show the :short scan.

jim(axes(ig), ig.mask; prompt=false)
sino_geom_plot!(rg, ig)
Example block output
prompt()

Ellipse parameters for Shepp-Logan phantom:

μ = 0.01 / mm # typical linear attenuation coefficient
ob = shepp_logan(SheppLogan(); fovs = fovs(ig), u = (1, 1, μ))
10-element Vector{ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}}:
 ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}((0.0 mm, 0.0 mm), (117.76 mm, 86.94 mm), (1.5707963267948966,), 0.02 mm^-1, (1.0,), (6.123233995736766e-17,))
 ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}((0.0 mm, -2.3184 mm), (111.872 mm, 83.4624 mm), (1.5707963267948966,), -0.0098 mm^-1, (1.0,), (6.123233995736766e-17,))
 ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}((28.16 mm, 0.0 mm), (39.68 mm, 13.86 mm), (1.2566370614359172,), -0.0002 mm^-1, (0.9510565162951535,), (0.30901699437494745,))
 ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}((-28.16 mm, 0.0 mm), (52.48 mm, 20.16 mm), (1.8849555921538759,), -0.0002 mm^-1, (0.9510565162951536,), (-0.30901699437494734,))
 ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}((0.0 mm, 44.099999999999994 mm), (32.0 mm, 26.459999999999997 mm), (1.5707963267948966,), 0.0001 mm^-1, (1.0,), (6.123233995736766e-17,))
 ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}((0.0 mm, 12.600000000000001 mm), (5.888 mm, 5.796 mm), (0.0,), 0.0001 mm^-1, (0.0,), (1.0,))
 ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}((0.0 mm, -12.600000000000001 mm), (5.888 mm, 5.796 mm), (0.0,), 0.0001 mm^-1, (0.0,), (1.0,))
 ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}((-10.24 mm, -76.23 mm), (5.888 mm, 2.898 mm), (0.0,), 0.0001 mm^-1, (0.0,), (1.0,))
 ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}((0.0 mm, -76.23 mm), (2.944 mm, 2.898 mm), (0.0,), 0.0001 mm^-1, (0.0,), (1.0,))
 ImagePhantoms.Object2d{ImagePhantoms.Ellipse, Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}, Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 1, Float64}((7.68 mm, -76.23 mm), (5.888 mm, 2.898 mm), (1.5707963267948966,), 0.0001 mm^-1, (1.0,), (6.123233995736766e-17,))

Short arc fan-beam sinogram for Shepp-Logan phantom:

sino = radon(rays(rg), ob)
jim(axes(rg), sino; title="Shepp-Logan 'short' sinogram",
    xlabel="r", ylabel="ϕ")
Example block output

Image reconstruction via FBP

Here we start with a "plan", which would save work if we were reconstructing many images.

plan = plan_fbp(rg, ig)
FBPNormalPlan{S,I,H,V} with
 S = SinoFanArc{Unitful.Quantity{Float64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float32} (130, 67)
 I = ImageGeoms.ImageGeom{2, Tuple{Unitful.Quantity{Int64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Unitful.Quantity{Int64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}}, BitMatrix} (128, 126)
 H = Vector{Unitful.Quantity{Float64, 𝐋^-1, Unitful.FreeUnits{(mm^-1,), 𝐋^-1, nothing}}} with extrema (0.0001541825009936049 mm^-1, 0.38515099184495855 mm^-1)
 V = Matrix{Float32} (130, 67) with extrema (0.0f0, 0.062292427f0)

Examine Parker weights:

jim(axes(rg), plan.view_weight; title = "Parker weights",
    xlabel="r", ylabel="ϕ")
Example block output

Finally perform FBP:

fbp_image = fbp(plan, sino);

A narrow color window is needed to see the soft tissue structures:

clim = (0.9, 1.1) .* μ
jim(axes(ig), fbp_image, "FBP image for 'short' arc case"; clim)
Example block output

For comparison, here is the ideal phantom image:

true_image = phantom(axes(ig)..., ob, 2)
jim(axes(ig)..., true_image, "True phantom image"; clim)
Example block output

Here is the difference image. Better sampling would reduce the errors.

jim(axes(ig)..., fbp_image - true_image, "Error image")
Example block output

This page was generated using Literate.jl.