SPECTrecon ML-EM
This page illustrates ML-EM reconstruction with the Julia package SPECTrecon
.
This page comes from a single Julia file: 4-mlem.jl
.
You can access the source code for such Julia documentation using the 'Edit on GitHub' link in the top right. You can view the corresponding notebook in nbviewer here: 4-mlem.ipynb
, or open it in binder here: 4-mlem.ipynb
.
Setup
Packages needed here.
using SPECTrecon: SPECTplan, psf_gauss, project!, backproject!, mlem, mlem!
using MIRTjim: jim, prompt
using Plots: scatter, plot!, default; default(markerstrokecolor=:auto)
The following line is helpful when running this example.jl file as a script; this way it will prompt user to hit a key after each figure is displayed.
isinteractive() ? jim(:prompt, true) : prompt(:draw);
Overview
Maximum-likelihood expectation-maximization (ML-EM) is a classic algorithm for performing SPECT image reconstruction.
Simulation data
nx,ny,nz = 64,64,50
T = Float32
xtrue = zeros(T, nx,ny,nz)
xtrue[(1nx÷4):(2nx÷3), 1ny÷5:(3ny÷5), 2nz÷6:(3nz÷6)] .= 1
xtrue[(2nx÷5):(3nx÷5), 1ny÷5:(2ny÷5), 4nz÷6:(5nz÷6)] .= 2
average(x) = sum(x) / length(x)
function mid3(x::AbstractArray{T,3}) where {T}
(nx,ny,nz) = size(x)
xy = x[:,:,ceil(Int, nz÷2)]
xz = x[:,ceil(Int,end/2),:]
zy = x[ceil(Int, nx÷2),:,:]'
return [xy xz; zy fill(average(xy), nz, nz)]
end
jim(mid3(xtrue), "Middle slices of xtrue")
PSF
Create a synthetic depth-dependent PSF for a single view
px = 11
psf1 = psf_gauss( ; ny, px)
jim(psf1, "PSF for each of $ny planes")
In general the PSF can vary from view to view due to non-circular detector orbits. For simplicity, here we illustrate the case where the PSF is the same for every view.
nview = 60
psfs = repeat(psf1, 1, 1, 1, nview)
size(psfs)
(11, 11, 64, 60)
SPECT system model using LinearMapAA
dy = 8 # transaxial pixel size in mm
mumap = zeros(T, size(xtrue)) # zero μ-map just for illustration here
plan = SPECTplan(mumap, psfs, dy; T)
using LinearMapsAA: LinearMapAA
using LinearAlgebra: mul!
forw! = (y,x) -> project!(y, x, plan)
back! = (x,y) -> backproject!(x, y, plan)
idim = (nx,ny,nz)
odim = (nx,nz,nview)
A = LinearMapAA(forw!, back!, (prod(odim),prod(idim)); T, odim, idim)
LinearMapAO: 192000 × 204800 odim=(64, 50, 60) idim=(64, 64, 50) T=Float32 Do=3 Di=3
map = 192000×204800 LinearMaps.FunctionMap{Float32,true}(#5, #7; issymmetric=false, ishermitian=false, isposdef=false)
Basic Expectation-Maximization (EM) algorithm
Noisy data
using Distributions: Poisson
if !@isdefined(ynoisy) # generate (scaled) Poisson data
ytrue = A * xtrue
target_mean = 20 # aim for mean of 20 counts per ray
scale = target_mean / average(ytrue)
scatter_fraction = 0.1 # 10% uniform scatter for illustration
scatter_mean = scatter_fraction * average(ytrue) # uniform for simplicity
background = scatter_mean * ones(T,nx,nz,nview)
ynoisy = rand.(Poisson.(scale * (ytrue + background))) / scale
end
jim(ynoisy, "$nview noisy projection views")
ML-EM algorithm - basic version
x0 = ones(T, nx, ny, nz) # initial uniform image
niter = 30
if !@isdefined(xhat1)
xhat1 = mlem(x0, ynoisy, background, A; niter)
end
size(xhat1)
(64, 64, 50)
This preferable ML-EM version preallocates the output xhat2
:
if !@isdefined(xhat2)
xhat2 = copy(x0)
mlem!(xhat2, x0, ynoisy, background, A; niter)
end
@assert xhat1 ≈ xhat2
jim(mid3(xhat2), "ML-EM at $niter iterations")
This page was generated using Literate.jl.