Cone
This page illustrates the Cone
shape in the Julia package ImagePhantoms
.
This page comes from a single Julia file: 36-cone.jl
.
You can access the source code for such Julia documentation using the 'Edit on GitHub' link in the top right. You can view the corresponding notebook in nbviewer here: 36-cone.ipynb
, or open it in binder here: 36-cone.ipynb
.
Setup
Packages needed here.
using ImagePhantoms: Object, phantom, radon, spectrum
using ImagePhantoms: Cone, cone
import ImagePhantoms as IP
using ImageGeoms: ImageGeom, axesf
using MIRTjim: jim, prompt, mid3
using FFTW: fft, fftshift, ifftshift
using LazyGrids: ndgrid
using Unitful: mm, unit, °
using Plots: plot, plot!, scatter!, default
using Plots # gif @animate
default(markerstrokecolor=:auto)
The following line is helpful when running this file as a script; this way it will prompt user to hit a key after each figure is displayed.
isinteractive() ? jim(:prompt, true) : prompt(:draw);
Overview
A basic shape used in constructing 3D digital image phantoms is the cone, specified by its center, base radii, height, angle(s) and value. All of the methods in ImagePhantoms
support physical units, so we use such units throughout this example. (Using units is recommended but not required.)
Here are 3 ways to define a Object{Cone}
, using physical units.
center = (20mm, 10mm, -15mm)
width = (25mm, 30mm, 35mm) # x radius, y radius, height
ϕ0s = :(π/6) # symbol version for nice plot titles
ϕ0 = eval(ϕ0s)
angles = (ϕ0, 0, 0)
Object(Cone(), center, width, angles, 1.0f0) # top-level constructor
cone( 20mm, 10mm, 5mm, 25mm, 35mm, 15mm, π/6, 0, 0, 1.0f0) # 9 arguments
ob = cone(center, width, angles, 1.0f0) # tuples (recommended use)
Object3d{Cone, Float32, Unitful.Quantity{Int64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}, Float64, 3, Float64} (S, D, V, ...)
center::NTuple{3,Unitful.Quantity{Int64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}} (20 mm, 10 mm, -15 mm)
width::NTuple{3,Unitful.Quantity{Int64, 𝐋, Unitful.FreeUnits{(mm,), 𝐋, nothing}}} (25 mm, 30 mm, 35 mm)
angle::NTuple{3,Float64} (0.5235987755982988, 0.0, 0.0)
value::Float32 1.0
Phantom image using phantom
Make a 3D digital image of it using phantom
and display it. We use ImageGeoms
to simplify the indexing.
deltas = (1.0mm, 1.1mm, 0.9mm)
dims = (2^8, 2^8+2, 49) # odd
ig = ImageGeom( ; dims, deltas, offsets=:dsp)
oversample = 3
img = phantom(axes(ig)..., [ob], oversample)
p1 = jim(axes(ig), img;
title="Cone, rotation ϕ=$ϕ0s", xlabel="x", ylabel="y")
The image integral should match the object volume:
volume = IP.volume(ob)
(sum(img)*prod(ig.deltas), volume)
(27842.3539453125 mm^3, 27488.93571891069 mm^3)
Show middle slices
jim(mid3(img), "Middle 3 planes")
This page was generated using Literate.jl.